پایان نامه جهت اخذ درجه کارشناسی
عنوان کامل: بررسی و مقایسه چهار طرح ضرب کننده RNS
دسته: فناوری اطلاعات و کامپیوتر
فرمت فایل: WORD (قابل ویرایش)
تعداد صفحات پروژه: ۱۲۵
فهرست مطالب: جهت مشاهده فهرست مطالب این پروژه اینجا کلیک نمایید
______________________________________________________
بخشی از مقدمه متن:
ضرب پیمانه ای در علم رمزنگاری نقش مهمی ایفا می کند. از جمله روشهای رمزنگاری که به ضرب کننده پیمانه ای سریع نیاز دارد، روش رمزنگاری RSA می باشد که در آن نیاز به توان رساندن اعداد بزرگ در پیمانه های بزرگ می باشد. معمولاً برای نمایش اعداد در این حالات از سیستم باقی مانده (RNS) استفاده می شود و ضرب (به عنوان هسته توان رسانی) در این سیستم به کار می رود.
در اینجا برای آشنایی بیشتر به توضیح سیستم عددی باقی مانده می پردازیم و به کاربردها و فواید آن اشاراتی خواهیم داشت.
۱-۱ سیستم عددی باقیمانده (Residue Number System (RNS))
در حدود ۱۵۰۰ سال پیش معمایی به صورت شعر توسط یک شاعر چینی به صورت زیر بیان شد. «آن چه عددی است که وقتی بر اعداد ۳،۵و۷ تقسیم می شود باقیمانده های ۲،۳و۲ بدست می آید؟» این معما یکی از قدیمی ترین نمونه های سیستم عددی باقی مانده است.
در RNS یک عدد توسط لیستی از باقیمانده هایش برn عدد صحیح مثبت m1 تا mn که این اعداد دو به دو نسبت به هم اولند (یعنی بزرگترین مقسوم علیه مشترک دوبدوشان یک است) به نمایش در می آید. به اعداد m1 تا mn پیمانه (moduli)
می گویند. حاصلضرب این nعدد، تعداد اعدادی که می توان با این پیمانه ها نشان داد را بیان می کند. هر باقیمانده xi را به صورت xi=Xmod mi نمایش می دهند. در مثال بالا عدد مربوطه به صورت X=(2/3/2)RNS(7/5/3) به نمایش در می آید که X mod7=2 و X mod5=3 و X mod3=2. تعداد اعداد قابل نمایش در این مثال می باشد. می توان هرمجموعه ۱۰۵ تایی از اعداد صحیح مثبت یا منفی متوالی را با این سیستم عددی باقیمانده نمایش داد.
اثبات این که هر عدد صحیح موجود در محدوده، نمایش منحصر به فردی در این سیستم دارد به کمک قضیه باقیمانده های چینی(Chinese Remainder Theorem (CRT)) امکان پذیر است.
